逆变器是为500W的输出而设计,测量所得的交流输出功率是480.1W,功率损耗则是14.4W。在60Hz的频率下,交流输出电压有117.8V,输出电流是4.074A。这个配置获得97.09%的效率。利用相似的配置,将逆变器改为针对200W输出,然后再重新测量转换效率。结果显示,在这个负载下,交流功率为214W,功率耗损有6.0W,而在1.721A的输出电流下,60Hz输出电压为124.6V。在这个功率额定值下,所得的转换效率为97.28%。即使在较低一端的输出功率(100W),我们也看到相似的效率性能。
简单来说,通过把适当的高电压驱动器与优化了的低侧和高侧高电压IGBT结合,我们在这里提到的太阳能逆变器设计,能够在100~500W的功率输出范围内持续提供高转换效率性能。由于转换效率非常高,所以有关的低功率损耗并不会带来任何温度管理挑战。因此,在高500W的输出功率下,高侧IGBT (IRGB4062DPBF) 的结温大约80℃,比高的特定结温175℃要低于一半。同样地,在一样的功率水平下,低侧IGBT (IRG4BC20SD-PBF)显示83℃的结温。同时,当输出功率达到200W左右,温度还会变得更低。
IC1的5脚外接电容C4(472)和6脚外接电阻R7(4k3)为脉宽调制器的定时元件,所决定的脉宽调制频率为 fosc=1.1÷ (0.0047×4.3)kHz≈50kHz。即电路中的三极管VT1、VT2、VT3、VT4、变压器T1的工作频率均为50kHz左右,因此T1应选用高频铁氧体磁芯变压器,变压器T1的作用是将12V脉冲升压为220V的脉冲,网卡回收价格,其初级匝数为20×2,次级匝数为380。
IC2的5脚外接电容C8(104)和6脚外接电阻R14(220k)为脉宽调制器的定时元件,所决定的脉宽调制频率为 fosc=1.1÷ (C8×R14)=1.1÷(0.1×220)kHz≈50Hz。
R29、R30、R27、C11、VDZ2组成XAC插座220V输出端的过压保护电路,当输出电压过高时将导致稳压管VDZ2击穿,使IC2的4脚对地电压上升,芯片IC2内的保护电路动作,切断输出。
车载逆变器电路中的MOS管VT2、VT4有一定的功耗,必须加装散热片,其他器件均不需要安装散热片。当车载逆变器产品持续应用于功率较大的场合时,需在其内部加装12V小风扇以帮助散热。
单晶硅与多晶硅的区别
单晶硅和多晶硅的区别是,当熔融的单质硅凝固时,硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则形成单晶硅。如果这些晶核长成晶面取向不同的晶粒,则形成多晶硅。多晶硅与单晶硅的差异主要表现在物理性质方面。例如在力学性质、电学性质等方面,多晶硅均不如单晶硅。多晶硅可作为拉制单晶硅的原料。单晶硅可算得上是世界上纯净的物质了,一般的半导体器件要求硅的纯度六个9以上。大规模集成电路的要求更高,硅的纯度必须达到九个9。目
前,人们已经能制造出纯度为十二个9 的单晶硅。单晶硅是电子计算机、自动控制系统等现代科学技术中不可缺少的基本材料。